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[1] The real-time availability of satellite-derived precipitation estimates provides
hydrologists an opportunity to improve current hydrologic prediction capability for
medium to large river basins. Due to the availability of new satellite data and upgrades
to the precipitation algorithms, the Tropical Rainfall Measuring Mission (TRMM)
Multisatellite Precipitation Analysis real-time estimates (TMPA-RT) have been
undergoing several important revisions over the past ten years. In this study, the changes
of the relative accuracy and hydrologic potential of TMPA-RT estimates over its three
major evolving periods were evaluated and inter-compared at daily, monthly and seasonal
scales in the high-latitude Laohahe basin in China. Assessment results show that the
performance of TMPA-RT in terms of precipitation estimation and streamflow simulation
was significantly improved after 3 February 2005. Overestimation during winter months
was noteworthy and consistent, which is suggested to be a consequence from interference
of snow cover to the passive microwave retrievals. Rainfall estimated by the new version 6
of TMPA-RT starting from 1 October 2008 to present has higher correlations with
independent gauge observations and tends to perform better in detecting rain compared to
the prior periods, although it suffers larger mean error and relative bias. After a simple bias
correction, this latest data set of TMPA-RT exhibited the best capability in capturing
hydrologic response among the three tested periods. In summary, this study demonstrated
that there is an increasing potential in the use of TMPA-RT in hydrologic streamflow
simulations over its three algorithm upgrade periods, but still with significant challenges
during the winter snowing events.
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1. Introduction

[2] Precipitation is fundamental to life on Earth, and it is
among the most important factors in energy and mass fluxes
that dominate the weather, climate, hydrology, and ecolog-
ical systems. Therefore, precipitation measurements offer
essential information in understanding the balance of the

global energy and water cycle exchange that drives most
hydrologic models and has direct impacts on the planetary
circulation of the atmosphere [Sorooshian, 2004; Ebert
et al., 2007]. However, accurately measuring precipitation
at regional or global scales has been a challenging task due
to its high small-scale variability in space and time. Con-
ventional rain gauge and meteorological radar networks have
their own limitations because their distributions are often
sparse and data availability in remote regions and in complex
terrain is rather limited [Griffith et al., 1978; Simpson et al.,
1996; Astin, 1997; Vicente et al., 1998; Huffman et al.,
2001; Margulis and Entekhabi, 2001; Maddox et al., 2002;
Steiner et al., 2003]. Thus, satellite-based precipitation esti-
mates play an important role in detecting rainfall distribution
and have been complementary to the ground-based rain gauge
and radar measurements. Since the launch of the Tropical
Rainfall Measuring Mission (TRMM) [Simpson et al., 1988;
Kummerow et al., 2000] in 1997, there has been a growing
number of real-time and quasi-global satellite precipitation
products [Sorooshian et al., 2000; Joyce et al., 2004; Hong
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et al., 2004; Turk and Miller, 2005; Huffman et al., 2007;
Kubota et al., 2007] for a variety of scientific uses and natural
hazard detection and warning, such as flood forecasting,
drought assistance, landslide detection, and water quality
monitoring. The planned Global Precipitation Measurement
(GPM) mission with an approaching launch date of 14 Feb-
ruary 2014 [Tapiador et al., 2012], which will use an inter-
national constellation of microwave sensors, is anticipated to
provide more accurate global precipitation products so as to
improve our scientific understanding of the Earth system from
space [Smith et al., 2007; Hou, 2008]. As a prelude to GPM,
the current operational TRMM Multisatellite Precipitation
Analysis (TMPA) is intended to provide the best estimates of
quasi-global precipitation [Huffman et al., 2007]. The TMPA
merged data collected by two different types of satellite sen-
sors: low-Earth orbiting passive microwave (PMW) data,
which have a direct physical connection to the hydrometeor
profiles but sparse sampling of the time-space occurrence of
precipitation, and geostationary infrared (IR) data with
excellent space-time coverage (approximately 30 min/4 �
4 km), but indirect physical relations with precipitation. The
standard TMPA products include real time (3B42 RT, here-
after referred to as TMPA-RT) and post-real time research
products (3B42 V6, hereafter referred to as TMPA-V6), and
both versions of the TMPA products have been provided for a
sufficiently long time that researchers have had the chances to
develop and start reporting on various applications and vali-
dation studies that employ one or both versions [Huffman
et al., 2010].
[3] Many prior studies have reported on the improvement

of the TMPA-V6 products over TMPA-RT products through
bias correction using monthly rain gauge accumulations
[e.g., Tian et al., 2007; Su et al., 2008; Li et al., 2009; Dinku
et al., 2010; Gourley et al., 2010; Hirpa et al., 2010; Tobin
and Bennett, 2010; Behrangi et al., 2011; Bitew and
Gebremichael, 2011; Yong et al., 2010; Su et al., 2011].
However, it is the near real-time availability of the TMPA-
RT products and high spatial (0.25� � 0.25�) and temporal
(3h) resolution that has made them very attractive to the water
resources community, especially in developing countries, in
order to provide hydrologic predictions from which actions

can be taken onmedium to large river basins. Presently, TMPA-
RT products have been widely utilized in a variety of research
and operational applications [e.g., Gottschalck et al., 2005;
Li et al., 2009; Yong et al., 2010; Tobin and Bennett, 2010;
Behrangi et al., 2011; Khan et al., 2011; Romilly and
Gebremichael, 2011; Su et al., 2011; Wang et al., 2011]. For
example, currently the global real-time flood monitoring system
developed by NASA TRMM group (http://trmm.gsfc.nasa.
gov/) [Hong et al., 2007; Wang et al., 2011; Wu et al., 2012]
has demonstrated the initial capability of using satellite-derived
precipitation data as forcing for global river forecast models.
[4] During the course of TMPA-RT development, pre-

cipitation estimates from new sensors on various satellites
were integrated and thus the real-time algorithm has under-
gone several updates. Table 1 summarizes all precipitation-
sensing microwave satellites/sensors that were introduced
into the TMPA processing at different historical periods.
Generally speaking, the evolution of TMPA-RT can be
separated into the following three main development peri-
ods: 29 January 2002 to 3 February 2005 (Period I), 3 Feb-
ruary 2005 to 1 October 2008 (Period II), and 1 October
2008 to present (Period III). Specific details regarding the
sensors used, nominal coverage, and algorithmic changes
are provided in Appendix A.
[5] Given the dynamical evolution of the TMPA-RT

algorithm by the Appendix A, a thorough understanding to
the above mentioned major upgrades is critical to physically
analyzing the changes of data accuracy and hydrologic
potential of the real-time TMPA products across the three
different developing periods. Many efforts have been made
in prior studies to evaluate the hydrologic utility of TMPA-
RT for different basins throughout the globe [e.g., Li et al.,
2009; Dinku et al., 2010; Hirpa et al., 2010; Bitew and
Gebremichael, 2011; Khan et al., 2011; Su et al., 2011].
Yet, their study areas are rarely located at the high latitude
bands beyond the current TMI/PR orbiting regions. Below,
we highlight a number of questions about the TMPA-RT
algorithm evolution with the intention of addressing them
in this study: (1) Have the TMPA-RT estimates been sig-
nificantly improved over the three major evolution periods?
(2) TMI and TCI, the calibrators of TMPA-RT, provide

Table 1. Time History of Major Upgrades of Microwave Satellites/Sensors Introduced Into the TMPA Processinga

Period Satellites Sensors Period of Record Nominal Coverage Current Status

Period I TRMM TMI 8 Dec. 1997–Current 40� N-S Active
TRMM PR 8 Dec. 1997–Current 38� N-S Active
DMSP-F13 SSM/I 29 Jan. 2002–18 Nov. 2009 85� N-S Inactive
DMSP-F14 SSM/I 29 Jan. 2002–23 Aug. 2008 85� N-S Inactive
DMSP-F15 SSM/I 29 Jan. 2002–14 Aug. 2006 85� N-S Active, but unusable

Period II Aqua AMSR-E 3 Feb. 2005–Current 85� N-S Active
NOAA-15 AMSU-B 3 Feb. 2005–Current Global Active
NOAA-16 AMSU-B 3 Feb. 2005–Current Global Active
NOAA-17 AMSU-B 3 Feb. 2005–17 Dec. 2009 Global Inactive
NOAA-18 MHS 27 Nov. 2007–Current Global Active

Period III MetOP-1 MHS 27 Mar. 2009–Current Global Active
DMSP-F16 SSMIS Being incorporated into TMPA 85� N-S Active
DMSP-F17 SSMIS Being incorporated into TMPA 85� N-S Active

aNotation: Except for above microwave satellites/sensors, the international constellation of geosynchronous-orbit meteorological satellites including the
Geosynchronous Operational Environmental Satellites (GOES, United States), the Geosynchronous Meteorological Satellite (GMS, Japan), and the
Meteorological Satellite (Meteosat, European Community) provide the infrared (IR) data on a 4 km-equivalent grid over the latitude band 60� N-S for
TMPA-RT.
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coverage from 40�N-S. Thus, do the data of TMPA-RT that
cover higher latitude bands beyond 40�suffer from large
bias, especially in basins with snow covered land surfaces?
(3) Are the latest TMPA-RT products (i.e., 3B42RT-
Version6) much more similar to the gauge-adjusted TMPA-
V6 estimates than the previous two periods as suggested
by the developers, particularly in high-latitude basins?
(4) Finally, how did changes in input data and algorithm
design for TMPA-RT over the three different periods impact
hydrologic prediction skill?
[6] Yong et al. [2010] evaluated the data accuracy and

hydrological potential of TMPA-RT and TMPA-V6 in the
Laohahe Basin, China within the TMPA latitude band
(50�NS) but beyond the latitude band of the TMPA cali-
brator (40�N-S). In this study, we extend the work of Yong
et al. [2010] by specifically addressing the above questions
through evaluation of TMPA-RT precipitation products
using independent gauge reports and examination of TMPA-
RT estimates on hydrologic simulation using the three-layer
Variable Infiltration Capacity (VIC-3L) Model [Liang et al.,
1994, 1996]. Section 2 describes the Laohahe basin, the data
sets used, and the statistics used to evaluate TMPA precipi-
tation estimates and resulting hydrologic simulations. The
precipitation evaluation is divided into daily, monthly, and
seasonal analyses in section 3; this section also evaluates the
similarity between TMPA-RT to TMPA-V6. The impact of
the algorithmic changes on hydrologic simulation is evalu-
ated in section 4, and the paper is closed in section 5 with
conclusions and future recommendations.

2. Study Basin, Observed Data and Methodology

[7] The Laohahe basin, of which a detailed description is
provided in Yong et al. [2010], is located within the Chinese

typical arid and semi-arid regions. Accurate precipitation
estimates at high spatiotemporal scale is of particular
importance for such drought-prone basins with heteroge-
neous distributions of surface water resources. Compared to
other basins in the northern part of China, the Laohahe basin
has a remarkably dense observation network that can offer
detailed ground verification for the satellite-derived precip-
itation estimates (Figure 1). There are 52 rain gauges evenly
distributed within this 18,112 km2 basin and a streamflow
station of Xinlongpo located at the watershed outlet to
record observations of daily precipitation and streamflow
continuously from January 1990 to September 2010. Both
the China Meteorological Administration (CMA) and the
Chinese Ministry of Water Resources (CMWR) operate all
rain gauge networks over mainland China. In practice, the
local workers record the precipitation using two approaches
(i.e., tipping-bucket rain gauge and manual traditional omb-
rometer). Then these two types of recorded data are cross-
checked and the final errors have to be controlled within 4%
for daily rainfall observation according to the ministerial
standard. Hence, the Laohahe basin gauge network is of high
quality and is independent from what Huffman et al. [2007]
used for the gauge correction of TMPA post-real-time pro-
ducts. With respect to snow observations, they introduced a
known volume of warm water to thaw the snow in the
standard vessel. So the liquid equivalency of the snow is
computed as the total water volume minus the input warm
water volume. The observers make a particular mark after the
snow water equivalent digit in order to distinguish snow or
rainfall as the precipitation type. Such manual but effective
recording techniques can ensure the data quality and infor-
mation of observed snow for our study. Ultimately, these
precipitation data will be collected and edited in the Chinese
Hydrology Almanac at the end of every year.

Figure 1. Map of Laohahe Basin situated beyond the TMI/PR orbiting bands (40�NS) and locations of
rain gauges, meteorological stations, and streamflow station included in the study. Hydrologic evaluation
of TMPA-RT during three major evolving periods was performed over the whole basin (i.e., Basin
Average) and two selected 0.25� � 0.25�grids with black squares (i.e., Grid0501 and Grid0401), which
contain 5 and 4 rain gauges, respectively.
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[8] Daily maximum and minimum temperature and daily
average wind speed from 1990 to 2010 were gathered from
four meteorological stations to force the hydrologic model
(see Figure 1). Other data sources such as a digital eleva-
tion model (DEM), soil surveys, and vegetation, which are
needed to run the VIC-3L model, were taken from Yong
et al. [2010]. The grid mesh size of the hydrologic model
used in this study is 1

16
� � 1

16
�. To quantify the accuracy of

satellite-derived precipitation estimates, we used three types
of statistical indices including Pearson linear correlation
coefficient (CC), mean error (ME), root mean squared error
(RMSE), relative bias (BIAS), and contingency table-based
detection of rainy events (i.e., probability of detection
(POD), false alarm rate (FAR), and critical success index
(CSI)). In addition, Nash-Sutcliffe Coefficient of Efficiency
(NSCE) was used to assess the hydrologic model fit between
simulated and observed streamflow. The interested reader

can refer to all above statistical indices for their correspond-
ing formulae and meaning in Table 1 in Yong et al. [2010].

3. Evaluation and Comparison of Satellite
Precipitation Estimates

[9] Our evaluation and comparison were performed over
three domains including two selected 0.25� � 0.25� grids
(hereafter labeled as “Grid0501” and “Grid0401”; see
Figure 1) corresponding to TRMM pixel resolution as well
as the basin-averaged analysis (hereafter referred to as
“Basin Average”). The two, nested grid locations were
chosen because they contain 4–5 rain gauges within them
and provide an analysis at the fine, TRMM pixel scale.
Furthermore, there are significant differences in terrain and
land cover between these two grids though they are adjacent
to each other. Almost 80% of Grid0401 is at high elevation
(>1000 m) with evergreen broadleaf or coniferous trees,

Figure 2. Scatterplots of the daily TMPA-RT versus gauge observation for (top row) Grid 0501,
(middle row) Grid 0401, and (bottom row) Basin Average at (left column) period I, (middle column)
period II, and (right column) period III.
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while most regions within Grid0501 are considered flat
croplands and lowlands (elevations <1000 m) and are pre-
dominately covered by sparse grassland and shrubs. The rain
gauge accumulations from each gauge are averaged within
each TRMM pixel so that they can be compared to the TMPA

estimates. The objective aims to investigate the evolution
of the performance of TMPA-RT during the three periods
at daily, monthly, and seasonal time scale. Algorithm skill
in estimating rainfall amounts is compared to that obtained
with TMPA-V6 in order to assess whether TMPA-RT is

Figure 3. Comparisons of statistical indices of the daily (left) TMPA-RT and (right) TMPA-V6 versus
gauge observation at three evolving periods (I-III): (a and b) correlation coefficient, (c and d) mean error,
and (e and f) relative bias, (g and h) probability of detection, (i and j) false alarm ratio.
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approaching the skill of TMPA-V6 following the critical
algorithm updates. Considering both the major upgrade
periods of TMPA-RT and the time span of available obser-
vation data in the Laohahe basin, we separated the com-
parison periods of this study into three parts: Period I
(1 February 2002–1 January 2005), Period II (1 February
2005–30 September 2008), and Period III (1 October 2008–
30 September 2010). The different sensors, data inputs, and
algorithm changes during these three time periods are
summarized in Table 1 and the details are available in the
Appendix A.

3.1. Daily Comparison

[10] We start with the evaluation of daily TMPA-RT
against averaged rain gauge observations over Grid0501,

Grid0401, and Basin Average across Periods I, II, III,
respectively (Figures 2 and 3). There is a gradually increas-
ing CC between TMPA-RT and observed precipitation from
Period I to III for all three domains (Figure 3a). Taking
the domain of Basin Average for example, the CC value
increases from 0.46 in Period I to 0.75 in Period III
(increasing by approximately 63%). With respect to ME and
BIAS, TMPA-RT during Period III, however, didn’t perform
as well as expected, and was even worse than Period I for
Grid 0501 and Basin Average (Figures 3c and 3e). But,
it is worth noting that TMPA-RT exhibits a significant
improvement in the skill of detecting rain events. The indices
of POD and CSI are substantially increased throughout the
three evolving periods (Figures 2 and 3g), while the FAR
has an obvious decreasing tendency (Figure 3i). The results

Figure 4. Monthly variations of gauged precipitation, TMPA-RT, and TMPA-V6 during three evolving
periods, i.e., Period I (Feb. 2002–Jan. 2005), Period II (Feb. 2005–Sep. 2008), and Period III (Oct. 2008–
Sep. 2010): (a) Grid 0501, (b) Grid 0401, and (c) Basin Average.
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suggest that the new algorithm adjustments to 3B42RT-
Version6 (i.e., TMPA-RT during Period III) do not always
reduce the error and bias of the 3B42RT estimates, but they
apparently provide higher correlation with gauge observa-
tions and better detection for precipitation events in high-
latitude basins, which are potentially favorable factors for
improving the hydrologic potential of TMPA-RT. On the
other hand, statistics describing TMPA-V6 performance
don’t reflect the same tendencies noted with TMPA-RT over
the three periods, though it has relatively low ME and BIAS
(see the right column of Figure 3). Last, scatterplots in
Figure 2 reveal an interesting phenomenon in that TMPA-RT
has a slight tendency to overestimate lower rainfall rates and
underestimate higher ones, which is a similar finding in an

evaluation of GOES-based rainfall estimates from Vicente
et al. [1998].

3.2. Monthly Comparison

[11] To directly assess the skill of the TMPA products in
tracking the monthly variation of precipitation over the three
tested periods, we compare the time series of TMPA-RT,
TMPA-V6, and gauge observations over Grid 0501, Grid
0401, and Basin Average in Figure 4. Similar to the daily
results, the purely satellite-derived TMPA-RT demonstrated
a relatively poor performance in tracing the monthly varia-
tions of precipitation during Period I, while substantial
improvements were realized after 2005. This result confirms
the assertion of Huffman et al. [2010] that all TMPA-RT

Figure 5. Comparisons of gauge observation, TMPA-RT, and TMPA-V6 for two largest snowfall events
(i.e., 3 Jan. and 26 Feb.) in the winter of 2010 and two heavy rainstorms (i.e., 23–31 Jul. and 17–22 Aug.)
in the summer of 2010: (a and b) Grid 0501, (c and d) Grid 0401, and (e and f) Basin Average.

YONG ET AL.: SATELLITE RAINFALL HYDROLOGIC EVALUATION D09108D09108

7 of 21



data sets produced before 3 February 2005 should not be
used. However, at least in this high-latitude study basin, the
TMPA-RT estimates after 2005 still overestimate precipita-
tion compared to gauges, especially during the winter and
summer months. The BIAS of TMPA-RT during Period III
is even larger than that during Period II. But the monthly CC
of Period III looks better than the prior two periods. We
further analyzed the TMPA-RT estimates for two largest
snowfall events in the winter of 2010 and two heavy rain-
storms in the summer of 2010 (see Figure 5). TMPA-RT
significantly overestimates precipitation during all these
extreme weather events. For example, for the snowfall event
that occurred on 26th February 2010, TMPA-RT drama-
tically overestimated gauge observations over the whole
basin by approximately 2000% (i.e., 62.24 mm for TMPA-
RT versus 2.96 mm by gauges for Basin Average). Simi-
larly, for the largest rainstorm in 2010, the cumulative gauge

precipitation from the 23rd to 31st July is 70.81mm for Basin
Average, while the corresponding estimation of TMPA-RT
is 198.81mm, indicating overestimation of 180%. In con-
trast, precipitation from TMPA-V6 remains in good agree-
ment with gauge precipitation throughout all the periods (see
Figures 4 and 5).
[12] Next, we selected three statistical indices, CC, ME,

and BIAS to illustrate the evolution of monthly error char-
acteristics of TMPA-RT and TMPA-V6. The values of CC
improve throughout all three tested periods, while relatively
large values of ME and BIAS were still found for Period III
(see Figure 6). Above analyses suggest that the incorpora-
tion of AMSU-B and AMSR-E on February 2005, which
provides more passive microwave data covering high-
latitude bands, significantly improved the accuracy of TMPA-
RT precipitation estimates. Another important factor might be
that the microwave-calibrated IR coefficients were updated

Figure 6. Same as Figure 3 but for monthly precipitation: (a and b) correlation coefficient, (c and d)
mean error, and (e and f) relative bias.
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every 3hr instead of each pentad, and thus the IR-based
scheme for filling PMW coverage gaps was substantially
changed at higher latitudes. Relative to the prior two periods,
the latest upgrades of TMPA-RT greatly helped it to improve
its correlation with observed precipitation and improve the
skill of detecting rainy events, but the incorporation of PMW
and IR data did little to reduce ME and BIAS. We speculate
that the causes for such large bias of the current TMPA-RT
version come from two sources: 1) The PMW data for TMPA
are first calibrated by the TRMMCombined Instrument (TCI)
estimate, which combines data from TMI and PR. However,
the coverage of both TMI and PR is limited within the latitude
bands between 40�N-S. 2) Likewise, the TMI-TCI used as the
climatological monthly calibrator in 3B42RT-Version6 also
cannot cover latitude bands beyond 40�. Thus, the IR-based
schemes are poorly calibrated for higher latitudes to the pas-
sive microwave, especially during the cool season. Therefore,
the upgrades to the TMPA algorithm had little impact on ME
and BIAS. The monthly TMPA-V6 data didn’t reveal any
clear trends in error characteristics over the three periods, thus
the relatively higher CC and lower ME can mostly be attrib-
uted to the monthly gauge adjustments yielding the post-real-
time products [Su et al., 2008; Yong et al., 2010].

3.3. Seasonal Comparison

[13] Table 2 lists the statistical summary of seasonal
comparisons including spring [March–May (MAM)], sum-
mer [June–August (JJA)], autumn [September–November
(SON)], and winter [December–February (DJF)]. We also
specifically computed the statistics during winter by sepa-
rating snow versus rain events in order to assess the impact
of precipitation phase on TMPA-RT. Generally, there are
strong seasonal variations in the computed statistics during
the three tested periods. All evaluations over Grid0501,
Grid0401, and Basin Average show higher CC, POD, and
CSI and lower FAR in the summer compared to other sea-
sons, while the worst performance occurs in winter. In terms
of the first four indicators, all seasons tended to experience
better precipitation estimates during the three evolving per-
iods of TMPA-RT. For example, the CC value of Basin
Average in summer rises from 0.48 in Period I to 0.68 in
Period II, and finally reaches 0.85 in Period III. For random
error and bias there are the largest values of ME and RMSE
in summer months because both the amount and frequency
of precipitation are highest in this season. By analyzing all
values of ME, RMSE, and BIAS for different seasons
throughout the three different periods, we can conclude that

the errors in Period III found in the daily and monthly
comparisons (Figures 3 and 6) are primarily attributed to the
overestimation of the 3B42RT-Version6 algorithm for
summer rainstorms. In addition, it is worth noting that the
largest relative biases occur in winter in estimating the water
equivalent with snowing events. After excluding these
snowing days, we found that the CC evidently increased
from Period I to III, meanwhile ME, RMSE, and BIAS
improved significantly in winter. Moreover, the detection of
precipitating events also performs slightly better for rainy
days. In general, approximately 45% of the total annual
errors come from heavy rainfall events in summer, while the
proportion during winter is only 15%.
[14] To help developers diagnose the impact of snow on

TMPA estimates in high-latitude basins, we calculated the
number of snowing days, cumulative snow water equivalent,
and four representative statistical indices (i.e., CC, ME,
RMSE, and BIAS) of TMPA-RT and TMPA-V6 versus
Gauge for the winters from 2005 to 2010 in the Laohahe
basin (see Table 3). It is notable that TMPA-RT has rela-
tively better cool season performance during the years with
the least number of snowing days. For example, the best
performance occurred in the winter of 2009, which only has
two snowing days and 2.35 mm of snowmelt for the whole
basin. In contrast, the worst performance is found in the
winter of 2010 with the maximum of snowing days (5 days)
and water-equivalent cumulative snowmelt (10.54 mm).
The overestimation with TMPA-RT during winter months
in the Laohahe basin was especially remarkable and con-
sistent, which might be attributed to two major reasons:
(1) The IR-based retrievals with high space-time coverage,
but poor correlation with rainfall (or snow water equivalent),
are the main inputs of the TMPA system in high-latitude
areas. Unfortunately, IR-based estimates with warm-top
stratiform cloud systems perform rather poorly during the
cold seasons [Vicente et al., 1998; Tian et al., 2007]. (2) As
another confounding factor, the snow cover in winter very
likely interferes with the PMW-based retrievals [Grody,
1991; Ferraro et al., 1998], such as these two important
microwave sensors of AMSR-E and AMSU-B that can cover
higher-latitude bands (beyond 40�N-S). In particular, the
high frequency channels (89 and 150-GHz) of AMSU-B
might detect more scattering associated with precipitation
sized ice particles in the winter atmosphere, which indirectly
raises its retrieval precipitation rate [Vila et al., 2007].
Thus, the available PMW-based calibrations of IR and
the PMW data themselves covering high-latitude regions

Table 3. Number of Snowing Days, Observed Cumulative Snowmelt, and Statistical Indices (CC, ME, RMSE, and BIAS) of Daily
TMPA-RT and TMPA-V6 Versus Gauge for Every Winter From 2005 to 2010 in Laohahe Basina

Phases Year
Number of

Snowing Days
Observed Cumulative

Snowmelt

TMPA-RT Versus Gauge TMPA-V6 Versus Gauge
Performance

LevelCC ME RMSE BIAS CC ME RMSE BIAS

Period II 2005 4 5.434 0.086 1.153 3.825 1909.40% 0.120 0.052 0.443 85.63% Poor
2006 4 4.766 �0.042 0.537 1.593 1013.50% �0.009 0.014 0.381 26.56% Average
2007 2 3.400 0.249 0.388 1.232 1023.75% 0.539 0.029 0.273 75.19% Average
2008 3 3.480 0.237 0.409 1.319 1497.97% 0.218 0.061 0.393 221.84% Average

Period III 2009 2 2.350 0.773 0.489 1.679 597.42% 0.888 0.085 0.313 104.31% Good
2010 5 10.540 �0.042 2.099 7.733 1791.94% �0.045 0.076 0.857 64.99% Poor

aNotation: If the snowing observations of more than half rain gauges distributed within the whole basin exceed the threshold of 0.1mm, this day will be
labeled as a “snowing day.”
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cannot offer accurate retrievals with snow events. As a
result, the TMPA estimates suffer serious bias during the
cool seasons.

3.4. Detection of Similarity Between TMPA-RT
and TMPA-V6

[15] Some previous studies have verified that TMPA-V6
showed better performance in hydrologic simulation than
TMPA-RT in many basins over the globe [Su et al., 2008;
Stisen and Sandholt, 2010; Yong et al., 2010; Bitew and
Gebremichael, 2011]. Meanwhile, the TMPA producers
also suggested that the real-time data sets were made to be
similar to the research products as much as possible.
Therefore, we specifically address the following question
that naturally arises among data users: Did the latest
upgrades make TMPA-RT closer to TMPA-V6 than before?
To address this issue, we first plotted the annual statistical
indices of TMPA-RT versus TMPA-V6 over Grid0501,
Grid0401, and Basin Average during 2002–2010 (Figure 7).
The results of annual statistics show that the TMPA-RT

estimates after 2005 generally have higher correlation, lower
errors, and better rain detection against TMPA-V6 than
before. However, TMPA-RT of Period III doesn’t continue
the tendency of approaching the skill of TMPA-V6 like that
from Period I to Period II. Four statistics (i.e., CC, POD,
FAR, and CSI) of Period III show no clear significant
improvements compared with Period II. The indices of error
and bias (i.e., ME, RMSE, and BIAS) are even larger than
those of Period II.
[16] Considering the strong seasonality within satellite-

based precipitation estimates, we further investigated the
seasonal statistics of TMPA-RT versus TMPA-V6 for more
insightful understanding. Figures 8a and 8c show that there
are gradually increasing CC, POD, and CSI between TMPA-
RT and TMPA-V6 from Period I to III during the spring and
autumn seasons. Interestingly, the values of error and bias
(ME, RMSE, and BIAS) and false alarm ratio (FAR) have a
significant decreasing tendency for these two seasons, which
is different from the annual statistics. However, such varia-
tions expected by the TMPA producers were not found

Figure 7. Annual variations of statistical indices for daily TMPA-RT versus TMPA-V6 over Grid 0501,
Grid 0401, and Basin Average, respectively.
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in the seasons of summer and winter (Figures 8b and 8d).
For instance, the values of ME, RMSE, and BIAS in
Period III are higher than those values in Period II during the
summer months. For winter, besides similar overestimation

of error and bias, the POD values of three domains even
show anomalous fluctuations. Therefore, it can be concluded
that relative to the prior two periods, the larger bias and error
between TMPA-RT and TMPA-V6 during Period III are

Figure 8. Same as Figure 7 but for seasonal statistics: (a) Spring [March–May (MAM)], (b) Summer
[June–August (JJA)], (c) Autumn [September–November (SON)], (d) Winter [December–February (DJF)].
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chiefly attributed to the remarkable overestimation of the
TMPA-RT algorithm for the summer rainstorms and the
winter snowfall over our high-latitude basin.

4. Evaluation and Comparison of Hydrologic
Streamflow Simulations

[17] Up to this point, we have directly evaluated the pre-
cipitation estimates from TMPA-RT and TMPA-V6. The
purpose of this section is to assess the impacts of the TMPA-
RT’s upgrades over the three evolving periods from the
hydrologic perspective after applying the estimates as forc-
ing to the VIC-3L hydrologic model. The VIC-3L model
was calibrated using monthly rain gauge and streamflow
observations on the Laohahe basin for the period 1990–1999
by Yong et al. [2010]. Figure 9a shows the monthly series of
observed and VIC-simulated streamflow using rain gauge
inputs from 1990 to 2010. The plots of cumulative annual
precipitation and streamflow indicate that the annual rainfall
of the Laohahe basin hardly changed during the last twenty
years (Figure 9b). However, there is a dramatic decreasing
tendency with the observed discharge after 2000 (Figure 9c).
Yong et al. [2010] concluded that human activities such as
increased water diversions for irrigation, newly built reser-
voirs and dams, rapid development of water-consuming
industries, and growth of local economies have substantially
altered the natural hydrologic system. Here, we emphasize

that the streamflow after 2000 cannot be used as a standard
reference for assessing TMPA’s hydrologic potential provided
that the model parameters were estimated prior to 2000 due
to the tremendous human impacts in this basin. Therefore,
as recommended by some previous studies [e.g.,Wang et al.,
2010; Yong et al., 2010], we adopted the streamflow recon-
structed with gauge-observed precipitation input to the
hydrologic model as the surrogate for the observed stream-
flow during 2000–2010 (i.e., reconstruction period) in fol-
lowing hydrologic evaluations.
[18] We designed three simulation schemes (i.e., valida-

tion, bias-correction, and recalibration) to assess and inter-
compare the hydrologic potential of TMPA-RT over the
three evolving periods using the reconstructed streamflow as
the reference. First, we kept the same calibrated parameters
optimized during the calibration period 1990–1999
unchanged and used the 1

16
� � 1

16
� gridded TMPA-RT and

TMPA-V6 data to directly force the VIC-3L model for
hydrologic simulation. Figure 10 shows that simulations
using TMPA-RT significantly overestimates streamflow in
the Laohahe basin mostly due to its unrealistically high
precipitation estimates as presented in section 3. However,
it is worth noting that there is a gradually increasing ten-
dency in the correlation between TMPA-RT-derived and
reconstructed streamflow during the three periods. For
example, CC of daily streamflow in Period I is 0.02, while
this value rises to 0.24 in Period II and to 0.45 in Period III.

Figure 9. (a) Observed and gauge-driven VIC-simulated monthly streamflow for calibration period
(1990–1999) and reconstruction period (2000–2010). (b) Cumulative annual precipitation from 1990 to
2010 for the Laohahe basin. (c) Same as Figure 9b but for streamflow.
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With respect to monthly simulation, the values of CC are
�0.11, 0.49, and 0.61 for the three periods, respectively.
On the other hand, TMPA-V6 exhibits very good perfor-
mance in simulating the daily and monthly variations of
reconstructed streamflow, compared with TMPA-RT. More-
over, the streamflow driven by TMPA-V6 even agrees with
the reconstructed reference runoff more than the observed
streamflow due to the significance of land use changes and
human infrastructure impacts on streamflow in the Laohahe
basin. In other words, satellite-derived precipitation estimates
should have greater potential applications in simulating natural
hydrologic processes for typical ungauged basins which
experience much lower human impacts.
[19] The hydrologic validation in Figure 10 suggests that

there exists a high system bias in the TMPA-RT estimates
for our study basin. We speculate that similar results might
be prevailing with other high-latitude basins. Therefore, next
we adopted a simple bias reduction method to potentially
improve streamflow prediction using TMPA-RT at basin

scale. In the proposed approach, we defined a ratio bias
correction factor (rr) as:

rr ¼ 1

1þ BIAS
ð1Þ

where the relative bias (BIAS) is defined as following:

BIAS ¼
Pn

i¼1
ðSi � GiÞ
Pn

i¼1
Gi

� 100% ð2Þ

In (2), Si is the daily or monthly precipitation of TMPA-RT
at the ith time step, Gi is the corresponding gauge precipi-
tation, and n is the number of time steps.
[20] Next, the bias correction factor (rr) was applied to the

satellite precipitation retrievals (i.e.,rr � TMPA) for each of
the three tested periods (rr was 0.5622 for Period I, 0.6038
for Period II, and 0.4918 for Period III). We kept the

Figure 10. Hydrologic simulation scheme 1: validation for TMPA-RT and TMPA-V6. VIC-3L recon-
structed streamflow with the observed gauge precipitation and VIC-3L simulated streamflow directly
forced by TMPA-RT and TMPA-V6 during three evolving periods: (a) daily scale and (b) monthly scale.
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calibrated model parameters the same and merely replaced
the original TMPA-RT estimates with the bias-corrected
inputs to drive the VIC-3L hydrologic model. As we antic-
ipated, the simple approach of bias-correction remarkably
improved the application of TMPA-RT estimates to stream-
flow simulation (Figure 11). The TMPA-RT-driven simula-
tion agrees well with the reconstructed streamflow especially
after 2005. The best hydrological performance was found
in Period III (NSCE of 0.39 and 0.67, CC of 0.63 and 0.85
for daily and monthly streamflow prediction, respectively)
despite some overestimates during the summer and winter
months of 2010. Apparently, it was the higher CC and better
rainfall detection skill (POD, FAR, and CSI) of TMPA-RT
precipitation with rain gauges during Period III compared to
the prior two periods that drastically improved its hydrologic
capability. Following the simple procedure of bias-correction,
the TMPA-RT was closer to observed precipitation and its
potential for capturing the hydrological features of the basin
was significantly enhanced for our study basin, though it still
cannot achieve the simulation accuracy as in medium- or low-
latitude basins (e.g., those reported by Behrangi et al. [2011],
Bitew and Gebremichael [2011], and Su et al. [2011]).
[21] Presently, there is an increasing realization that many

hydrologic models are sensitive to the meteorological forc-
ing data, in particular precipitation [Wilk et al., 2006]. If the

error characteristics of input precipitation change dramati-
cally, then it is likely that sensitive model parameters, such
as soil infiltration parameters and base flow parameters will
need to change accordingly in order to achieve accurate
streamflow simulations [Su et al., 2005; Yong et al., 2010].
Although bias correction to the forcing data is the preferred
approach, these error characteristics may only be known
after a given algorithm was implemented and evaluated after
a significant passage of time. In other words, the identifica-
tion of bias may not be readily available for a recently
implemented precipitation algorithm or in locations where
there are scarce or nonexistent gauge networks. In the
third experiment, we recalibrated the sensitive parameters of
VIC-3L for the whole period of February 2002–September
2010 by using the original TMPA-RT precipitation estimates
as forcing data. Table 4 lists the calibrated and recalibrated
values of the seven sensitive parameters in the VIC-3L
model. These parameters are briefly depicted as follows:
(1) the infiltration parameter (b) which controls the amount
of water that can infiltrate into the soil; (2) the three soil
layer thicknesses (d1, d2, d3) which affect the maximum
storage available in the soil layers and consequently the
water available for transpiration; (3) three base flow para-
meters including the maximum velocity of base flow (Dm),
the fraction of maximum base flow (Ds), and the fraction of
maximum soil moisture (Ws), which jointly determine how

Figure 11. Hydrologic simulation scheme 2: Simulation forced with bias-adjusted TMPA-RT. Simulated
streamflow with bias-adjusted TMPA-RT referenced by the reconstructed streamflow with the gauged
precipitation during three evolving periods: (a) daily scale and (b) monthly scale.
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quickly the water stored in the third layer is withdrawn
[Liang et al., 1996; Su et al., 2005]. Among them, the most
intensive parameters are the infiltration parameter (b) and
the second soil layer thicknesses (d2), which were targeted
for intensive calibration/recalibration. Similar to Figure 11,
the recalibrated simulations also show that the TMPA-RT
after 2005 performed much better than prior periods for
hydrologic simulation (see Figure 12). From the values of
NSCE and CC, it can be seen that the best performance
still occurred in Period III. The recalibrated results suggest
again that hydrologic potential of TMPA-RT tends to

gradually increase during its three evolving periods. How-
ever, the recalibration approach compromised the model’s
parameterized representation of real-world physical pro-
cesses. For example, the recalibrated parameter, b, is 0.0055
(see Table 4), which almost reaches its minimum value of
zero. The other sensitive parameter, d2, has an optimized
value of 5.7 m that substantially exceeded the upper limit
of its normal physical range (0.1–2.0 m). Thus, it can be seen
that the bias of TMPA-RT overestimation was mitigated
at the cost of comprising the physical representativeness of
hydraulic properties of the basin, which seriously alters the
basin response under varying wetness conditions. Although
the recalibration may not be a physically consistent approach
for modeling the hydrologic response of real basins, it cer-
tainly helps us to confirm two facts: (1) the errors in simu-
lating streamflow forced by TMPA-RT are mostly due to the
unrealistically high precipitation estimation, and (2) there
is an increasing hydrologic potential for TMPA-RT in
streamflow simulations over its three historic development
periods. However, we did not intend to advocate the recali-
bration as the norm for the satellite QPE-hydrology com-
munity, rather than an investigation tactic in this study.
[22] Hossain and Lettenmaier [2006] have argued that a

shift in paradigm is needed to properly assess estimates of
rainfall from satellite sensors for modeling dynamic hydro-
logic processes such as the rainfall-runoff transforma-
tion and associated energy and moisture fluxes. To better
understand how error characteristics of input precipitation
affect hydrologic model results, we compared the error

Table 4. Comparison of Calibrated and Recalibrated Parameter
Values in VIC-3L Hydrologic Model for TMPA-RT-Driven
Streamflow Simulationsa

Parameter Unit Typical Range

Calibrated Values
With Gauge
Precipitation

Recalibrated
Values for
TMPA-RT

b N/A 0 � 0.5 0.01 0.0055
d2 m 0.1 � 2.0 1.2 5.7

Ds Fraction 0 � 1.0 0.004 0.0025
Dm mm/day 0 � 30.0 8.0 7.3

Ws Fraction 0 � 1.0 0.98 0.98
d1 m 0 � 0.1 0.05 0.05
d3 m 0.1 � 2.0 1.5 2.0

aNotation: In this study, the calibration period is Jan. 1990–Dec. 1999
and the recalibration period is Feb. 2002–Sep. 2010.

Figure 12. Hydrologic simulation scheme 3: recalibration for TMPA-RT. Recalibrated streamflow with
TMPA-RT (recalibrated model parameter values listed in Table 4) referenced by the reconstructed stream-
flow with the gauged precipitation during three evolving periods: (a) daily scale and (b) monthly scale.
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propagation of TMPA-RT through VIC-3L rainfall-runoff
processes at daily and monthly scale for the above three
types of simulation schemes. For NSCE and CC, Table 5
shows that the hydrological simulations of scheme 2 (bias-
correction) and 3 (recalibration) performed much better than
those of scheme 1 (validation). This suggests that both bias-
correction and model-parameter adjustment can effectively
remove the system bias of TMPA-RT through the VIC-3L
model and then improve the hydrologic potential of satellite
precipitation in this specific basin. NSCE and CC of TMPA-
RT-driven streamflow in scheme 2 and 3 exhibit an apparent
upward trend over the three tested periods (e.g., NSCE of
�1.44, 0.47, and 0.67; CC of 0.18, 0.71, and 0.85 for the
monthly streamflow simulation in scheme 2, respectively),
which is closely corresponding to the trend in CC between
satellite precipitation inputs and observations (e.g., CC of
0.67, 0.80, and 0.91 for the monthly rainfall in scheme 2).
Among the three tested periods, the best performance is in
Period III. This implies that the upgraded algorithm using
climatological monthly calibration that increased the CC,
POD, CSI and decreased the FAR between satellite pre-
cipitation and gauged observations potentially improved
the hydrologic application of TMPA-RT. In terms of BIAS
and RMSE, it is shown that the VIC-3L model signifi-
cantly amplified the errors propagated from original satellite
rainfall to the TMPA-RT-driven simulations (refer to the
statistics of scheme 1 in Table 5). However, following pre-
cipitation bias-correction or model-parameter adjustment,
both procedures having the same effect on hydrologic sim-
ulation, this situation was remarkably improved. Overall, the
results of rainfall-runoff error propagation suggest that the
hydrological potential of TMPA-RT tends to become better
and better during its evolving periods even in high-latitude
regions. The authors argue that such improvements of
hydrologic prediction are closely related to the inclusion of
new satellite data sources and upgrades to the precipitation
algorithms in the TMPA real-time precipitation systems.
Additionally, the error in rainfall versus error in runoff pre-
sented in Table 5 indicates that the hydrologic propagation
of satellite rainfall error through the VIC model exhibits a
quasi-linear behavior due to the large basin scale (18,112
km2) and longer time scales (daily or monthly) in this
study. While previous studies [Nikolopoulos et al., 2010;
Serpetzoglou et al., 2010] have indicated that a strong non-
linearity exists in the rainfall-runoff error transformation,
those results are generally for hourly flood simulations on
smaller-scale basins (<600 km2). Clearly, our results dem-
onstrate that there is a dependence of satellite rainfall error
propagation on basin scale.

5. Conclusions and Recommendations

[23] In this study, we have evaluated and inter-compared
the TMPA-RT precipitation estimates over three major
evolution periods at daily, monthly and seasonal time scales
using an independent, high-quality rain gauge network in a
high-latitude basin in China. Then, we investigated whether
the latest updates within Period III made the TMPA-RT data
more similar to the gauge-adjusted TMPA-V6 estimates as
intended by the algorithm developers. Last, we designed
three types of streamflow simulation experiments using the
VIC-3L model forced by TMPA-RT precipitation estimatesT
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in order to explore their hydrologic potential throughout the
three evaluation periods. Results drawn from the above
analyses may be specific to the Laohahe basin but are likely
to be more generally applicable to basins situated in 40�–50�
latitude bands; they are summarized as follows:
[24] 1. TMPA-RT estimates were least accurate and had

the poorest hydrologic performance prior to February 2005
(in Period I), while substantial improvements by use of
AMSR-E and AMSU-B data occurred thereafter as the
developers have documented. Our results support their
recommendation that users of TMPA precipitation should not
utilize the real-time data sets before February 2005 for
application to or feasibility studies involving hydrologic
prediction or other natural hazard studies (e.g., landslides).
The post-real-time research products (i.e., TMPA-V6) can be
regarded as a reliable substitute to use prior to February 2005.
[25] 2. Compared to the two prior periods before October

2008 (Periods I and II), the most recent version of TMPA-
RT (i.e., 3B42RT-Version6 for Period III in this study) has
higher CC, POD, and CSI and lower FAR compared to rain
gauge observations. However, it was noted that it also has
larger ME, RMSE and BIAS in our study basin. This
implied that the latest algorithm upgrades to TMPA-RT
tended to increase its correlation with independent rain
gauge observations and improve the skill of detecting rainy
events, but was not capable of systematically reducing bias.
Therefore, caution must be exercised when using the current
version 6 of TMPA-RT as inputs for flood forecasting
models due to its propensity to overestimate precipitation in
higher-latitude basins.
[26] 3. The latest upgrades to TMPA-RT during Period III

made it more statistically similar to TMPA-V6 than the real-
time algorithm running in Period II during the spring and
autumn seasons. However, such improved performance
anticipated by both the TMPA produced and data users was
not found in the summer and winter seasons due to the
remarkable overestimation of the current 3B42RT-Version6
algorithm in detecting the summer rainstorms and the winter
snowfall over this high-latitude basin.
[27] 4. In the present version of TMPA-RT, one of the

most serious issues was its notably poor performance (i.e.,
BIAS > 1000%) during winter months, in particular with
snowy events. Apparently, satellite-based precipitation esti-
mates in high latitudes during cold seasons still present sig-
nificant challenges. Snow covered surfaces present problems
for passive microwave retrievals, which are infrequent at high
latitudes. It is also possible that IR-based schemes are poorly
calibrated for high-latitude, cool season precipitation estimates.
[28] 5. Prior to performing a hydrologic evaluation,

streamflow was reconstructed on the Laohahe basin using
rain gauge inputs to the calibrated VIC-3L model. This
reconstruction step was needed in order to account for the
tremendous, unnatural and difficult-to-model reductions to
streamflow caused by human impacts after 2000. The first
experiment directly input TMPA-RT estimates to the cali-
brated VIC-3L model and compared simulations with the
reconstructed streamflow. Not surprisingly, the TMPA-RT-
driven model simulation significantly overestimated the
daily and monthly hydrographs for the entire period from
2002 to 2010. The second experiment applied a mean bias
correction factor to the TMPA-RT estimates for each of the
three periods and evaluated them as inputs to the calibrated

VIC-3L hydrologic model. In this hydrologic evaluation, the
TMPA-RT data sets revealed improvements throughout the
three evolving periods. The third, naive experiment incor-
porated no information about TMPA-RT precipitation bias,
which will be the case in basins lacking rain gauge networks,
and recalibrated model parameters to the uncorrected, biased
TMPA-RT estimates. The hydrologic skill in this latter
experiment was essentially the same as that achieved in the
second experiment. This indicates the model parameters can
be estimated in a manner to effectively remove precipitation
bias. However, it is noted that model parameter estimation
procedures require a long, multiyear data set, over which the
error characteristics of precipitation might change especially
following algorithm updates. Furthermore, the recalibrated
parameters didn’t always represent the realistic changes of
hydraulic properties for real basins. Thus, it is recommended
that the best procedure to increase the hydrologic use of
TMPA-RT precipitation estimates is to improve their accu-
racy as much as possible and be cognizant of potential biases.
[29] Looking to the future, Huffman et al. [2010] sug-

gested that more work is needed to extend TMPA precipi-
tation estimates to higher latitudes and further evaluate the
effectiveness of ongoing algorithm upgrades. Compared to
the post-real-time research products, TMPA-RT data have
attracted the attention of hydrologists who are engaging in
studies of flood forecasting and landslide warning over vast
regions due to the availability of the data in near-real time
over most parts of the globe. We expect the results reported
here will both provide the retrieval developers with some
valuable references and offer hydrologic users of TMPA-RT
data a better understanding of their error characteristics and
potential utilization for various operational hydrological
applications in high-latitude basins. In summary, this study
demonstrated that there is an increasing potential in the use
of TMPA-RT in hydrologic streamflow simulations over its
evolving periods. But, accurate detection and estimation of
precipitation during the winter months (especially for
snowing events) is still a challenging task for the satellite-
based precipitation estimates. We also note that the evalua-
tion of TMPA-RT across the time history of algorithm
development presented herein potentially mixes effects due
to varying storm or snowfall characteristics during various
years and the changes in the retrieval algorithms themselves.
Therefore, a more fair comparison could be accomplished
by applying the different algorithmic versions on the same
data period, a topic inviting future research. Additionally,
the results shown in this study are only from a representa-
tive, semi-arid, high-latitude basin in China, so future work
should extend to different hydroclimatic basins located in
different latitude bands. Moreover, the evaluation frame-
work developed herein can apply to new satellite precipita-
tion products such as the forthcoming 3B42RT Version 7
data sets and future GPM-era products.

Appendix A: Major Upgrades of TMPA-RT
During Its Three Evolving Periods

A1. Period I: 29 January 2002 to 3 February 2005

[30] Only the observations from two multichannel passive
microwave radiometers, i.e., the TRMM Microwave Imager
(TMI) and the Special Sensor Microwave/Imager (SSM/I)
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on Defense Meteorological Satellite Program (DMSP) plat-
forms, are converted to the merged microwave (3B40RT, or
HQ product) precipitation estimates with sensor-specific
versions of the Goddard Profiling Algorithm [GPROF;
Kummerow et al., 1996; Olson et al., 1999]. During this
initial period, the microwave HQ product, merged from
TMI, PR (precipitation radar, TRMM product 2B31) and
SSM/I, was used to calibrate the IR inputs collected from a
variety of sensors flying on several geosynchronous Mete-
orological satellites (refer to the note of Table 1).

A2. Period II: 3 February 2005 to 1 October 2008

[31] Several important upgrades occurred at the beginning
of this period for improving the data accuracy and algorithm
stability of TMPA. First, Advanced Microwave Scanning
Radiometer for Earth Observing System (AMSR-E) on
Aqua and 3 Advanced Microwave Sounding Unit-B
(AMSU-B) sensors onboard NOAA-series satellites were
included into the PMW mosaics to further calibrate the
TMPA-RT algorithm, which nearly doubles the typical
combined microwave coverage in the latitude band 50�N-S
from �45% to nearly 80% [Huffman et al., 2007]. The polar
orbits of AMSR-E and AMSU-B provide broader nominal
coverage (see Table 1). Especially, the use of AMSU-B
offers an excellent opportunity to reduce the errors associ-
ated with the inadequate samples by combining PMW
information from three NOAA POES satellites spaced
approximately 4 h apart with a spatial resolution of 16 km at
nadir and a wider swath than prior SSMI (2200 km) [Vila
et al., 2007]. However, both AMSU-B and AMSR-E still
have some limitations in their retrieval techniques which
prevent useful precipitation estimates over many land surfaces
or sea ice. Second, the Microwave Humidity Sounder (MHS)
on NOAA-18 was incorporated in TMPA-RT to replace the
AMSU-B on board NOAA-17 since 27 November 2007.
Similar to AMSU-B, the MHS contains 5 channels and
maintains almost same algorithm-wise within TMPA-RT. But
it was an afternoon sounder with a 1330 equator-crossing
time, while the previous AMSU-B on NOAA-17 has a
morning equator-crossing time of around 1030 local time
[Labow et al., 2011]. According to Turk et al. [2010], the
local crossing time of the AMSU-like sounders did have an
impact upon the soil moisture simulated with two land sur-
face models. So presumably they might also affect the
hydrologic performance of the TRMM-based precipitation
estimation. Third, inter-satellite calibration in the HQ product
is climatological, which reduced the real-time computational
load and prepared for the eventual decommissioning of
TRMM. Finally, the microwave-calibrated IR coefficients
are recomputed every three hr to better control unrealistically
high estimates associated to unusually cold IR background
temperatures (Tb’s) but with low rainfall rates, such as with
high-level cirrus clouds (ftp://trmmopen.gsfc.nasa.gov/pub/
merged/3B4XRT_doc.pdf).

A3. Period III: 1 October 2008 to Present

[32] The last major upgrades for the TMPA real-time
system occurred on 17 February 2009. The data sets of
the new Version 6 of the TMPA-RT (hereafter “3B42RT-
Version6”; note that this should not to be confused with

TMPA post-real time product “3B42V6”) starting from
1 October 2008 were released so as to provide the users a
backlog for validation and application activities with the new
data. Once the new system is stable, the algorithm developers
will seriously consider that the entire data record of TMPA-
RT might be reprocessed by the 3B42RT-Version6 scheme.
The primary goal of the new design of this algorithm and
input data is to enable the real-time TMPA-RT and the post
real-time gauge-adjusted products TMPA-V6 systems to be
as similar as possible for ensuring consistency between these
two data sets [Huffman et al., 2010]. One important differ-
ence between them is the calibrator of TMPA-V6, TRMM
Combined Instrument (TCI) that combines data from both
TMI and PR, is not available in real time. Therefore, the
developers first determined a matched histogram calibration
of TMI to the TCI, computed from 10 years of coincident
data to establish the climatology for each calendar month.
Then, a climatological monthly calibration of TCI to 3B43
V6 (another TRMM product computed at monthly time
intervals; not to be confused with aforementioned “3B42V6”
and “3B42RT-Version6”) is calculated as a simple ratio on a
1� � 1� grid, aggregated to an overlapping 3� � 3� template,
and using 10 years of data. Finally, the TMI-TCI and TCI-
3B43 calibrations are successively applied to the preliminary
real-time products to create the 3B42RT-Version 6 products.
One of the main purposes of this algorithm upgrade is
to reduce the bias of TMPA-RT over land. In addition, the
AMSU-B sensor on NOAA-17 was inactive on 12 December
2009 and it was replaced by the MHS sensor on the Euro-
pean Operational Meteorological (MetOp) satellite since
27 March 2009 (Table 1). Later enhancements to the TMPA
standard products mainly include improving error quantifi-
cation and more importantly, extension to higher latitudes.
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